
Rotary Encoder Interface
for

Spartan-3E Starter Kit

Ken Chapman
Xilinx Ltd
20th February 2006

Rev.2
With thanks to Peter Alfke (Xilinx Inc.)

Rotary Encoder Interface for Spartan-3E Starter Kit 2

Limited Warranty and Disclaimer. These designs are provided to you “as is”. Xilinx and its licensors make and you receive no
warranties or conditions, express, implied, statutory or otherwise, and Xilinx specifically disclaims any implied warranties of
merchantability, non-infringement, or fitness for a particular purpose. Xilinx does not warrant that the functions contained in these
designs will meet your requirements, or that the operation of these designs will be uninterrupted or error free, or that defects in
the Designs will be corrected. Furthermore, Xilinx does not warrant or make any representations regarding use or the results of
the use of the designs in terms of correctness, accuracy, reliability, or otherwise.

Limitation of Liability. In no event will Xilinx or its licensors be liable for any loss of data, lost profits, cost or procurement of
substitute goods or services, or for any special, incidental, consequential, or indirect damages arising from the use or operation
of the designs or accompanying documentation, however caused and on any theory of liability. This limitation will apply even if
Xilinx has been advised of the possibility of such damage. This limitation shall apply not-withstanding the failure of the essential
purpose of any limited remedies herein.

This design module is not supported by general Xilinx Technical support as an official Xilinx Product.
Please refer any issues initially to the provider of the module.

Any problems or items felt of value in the continued improvement this reference design would be gratefully received by the
author.

Ken Chapman
Senior Staff Engineer – Spartan Applications Specialist
email: chapman@xilinx.com

Limitations

The author would also be pleased to hear from anyone using PicoBlaze (KCPSM3) or the UART macros with information about
your application and how these macros have been useful.

Rotary Encoder Interface for Spartan-3E Starter Kit 3

Design Overview
This main purpose of this reference design is to provide an interface to the rotary encoder on the Spartan-3E Starter Kit. However, it is hoped that this
document combined with the VHDL code and user constraints file (UCF) may provide useful reference for those less familiar with Spartan-3E devices and
looking for advice on how to design using them. Some additional exercises are suggested for self education.

Rotary
Encoder

8 LEDs

The design provided detects left and right rotation of the encoder and uses this to
controls which of the 8 simple LEDs is illuminated. The rotary control can also be
depressed (with or without simultaneous rotation) and this is used to invert the LEDs. It
is only very simple behaviour, but my daughter said it was “cool” and I bet you won’t
be able to resist playing with it too!

Things to learn from this design

Interfacing to a rotary encoder.
Constraining pin locations using UCF constraints.
Simple VHLD illustrating synchronous design techniques.
Using the built in pull-up and pull-down resistors in the input/output blocks.
Direct drive of LEDs.
Good design practice for higher performance

Dedicated flip-flops in the input/output blocks.
PERIOD timing constraint.

Configuration using iMPACT batch file.

Try it now – it only takes 30 seconds!

As well as the source design files, a compiled configuration bit file is
provided which you can immediately download into the Spartan
XC3S500E device on your board. It is recommended that you try this to
become familiar with what the design does before continuing to read.

To make this task really easy the first time, unzip all the files provided
into a directory and then double click on ‘install_left_right_leds.bat’.
Assuming you have the Xilinx software installed, your board connected
with the USB cable and the board powered (don’t forget the switch), then
this should open a DOS window and run iMPACT in batch mode to
configure the Spartan-3E with the design.

http://www.xilinx.com/products/boards/s3estarter/files/s3esk_rotary_encoder_interface.zip

Rotary Encoder Interface for Spartan-3E Starter Kit 4

Design Size
This design hardly touches the XCSS500E device actually using just 0.5% of the logic resources in total. Clearly room left for you to add more �

Number of occupied Slices: 22 out of 4,656 1%

Total equivalent gate count for design: 955

MAP report

FPGA Editor view Floorplanner view

XC3S500E

Rotary Encoder Interface for Spartan-3E Starter Kit 5

Rotary Encoder & Signals

The encoder on the Starter Kit board has a third simple switch which is closed when you press the shaft towards the base. One side of this switch is
connected to 3.3v on the board, so in this case a ‘1’ is generated when pressed and an IOB PULL-DOWN resistor is used to provide a ‘0’ at all other times.

The Encoder - The basic principle of the rotary encoder is that of a
cam connected to a shaft which is used to operate two switches. When
in the stationary ‘detent’ position both switches are closed. Then
depending on which way the shaft is rotated, one switch will open
before other. Likewise, as the rotation continues, one switch will be
closed before the other. This diagram only depicts that one sequence of
the switches will occur for every 360˚ revolution. The encoder on the
board actually repeats the sequence every 18˚ (20 clicks per
revolution).

Turning RIGHTTurning LEFT

GND

Vcco

Vcco

The Signals - To provide logic signals that the Spartan-3E device can
work with, one side of each switch is connected to ground. So when the
switch contacts are closed, the signal to the Spartan-3E is definitely
Low or ‘0’. When the switch contacts are opened during rotation, a
PULL-UP resistor is required to raise the signal to High or ‘1’. A nice
feature of Spartan input/output blocks (IOB) is that they have built in
optional PULL-UP and PULL down resistors which save adding
external components.

A=‘0’

B=‘1’

These oscilloscope traces were captured on the Starter kit and show the signals
being detected by the Spartan-3E. The irregularity of the ‘pulses’ is to be expected
given the human input! The red and green brackets indicate the logic levels
consistent with the switch positions depicted in the diagram. Note that just looking at
the ‘A’ and ‘B’ signals as a snapshot is not enough information to evaluate direction.
The sequence of signals has to be evaluated.

Hint – Look at the UCF file to see
these resistors being enabled.

Rotary Encoder Interface for Spartan-3E Starter Kit 6

Contact Bounce

This scope trace shows the chatter observed on the ‘A’ switch on one
particular occasion. The switch opened and the signal went High for
approximately 2.5ms. It then closed for ~1ms, opened for ~1ms, closed
again momentarily, before finally settling on truly being open and providing
a steady High signal. Even if other cases are not this bad, the interface
must deal with them appropriately when they do occur.

In the design provided, you should find that each ‘click’ of the shaft moves the illuminated LED one position only. Note that it is one position every time and
not suddenly several positions even if you turn it really slowly or click it one position in an ‘instant’ (try it and see). If this control was for tuning your car
radio, you would also expect the same reliable operation to home in on the radio station of your choice.

Unfortunately, anything mechanical is prone to bounce and this is very true of switch contacts which are said to ‘chatter’. Although switch manufactures go
to considerable lengths to minimise this effect, sometimes we have to design around the issue and that is the case with the rotary encoder interface.

A

B

Rising edge on ‘A’ with B=‘0’ indicates RIGHT turn Switch opening chatter on ‘A’
injects false ‘clicks’ to the right.

The initial obvious way to determine the direction of rotation is as follows:-
If ‘A’ goes High whilst ‘B’ is Low then rotation is to the to the Right.
If ‘B’ goes High whilst ‘A’ is Low then rotation is to the to the Left.

The diagram below indicates how switch chatter could be interpreted as additional rotation ‘clicks’ in either direction even when the intention is only to
take one step to the right.

D
et

en
t

D
et

en
t

Turning RIGHT

Switch closing chatter on ‘B’ injects false ‘clicks’
to the left (‘B’ going High whilst ‘A’ is Low).

Note – Spartan devices are relatively fast. There are 50,000 clock
cycles at 50MHz in the duration of one of these 1ms chatter events.

2.5ms/div

Exercise – Implement this
‘obvious’ rotation detector
and see how unreliable it is.

Rotary Encoder Interface for Spartan-3E Starter Kit 7

Rotary Contact Filter
Clearly the objective of the filter is to eliminate the switch chatter completely. This is a achieved by detecting only the first change of the signal and ignoring
all subsequent activity on the same signal until the other switch also changes state. Flip-flops provide the ‘memory’ for this function.

(1)

A

B

rotary_q1

Note that this can all be achieved with a synchronously clocked circuit because the 50MHz clock rate is much faster than any events taking place at the
switch. Synchronous design techniques avoid introducing different forms of unreliable behavior as well as leading to maximum efficiency of the Spartan-3E.

rotary_filter: process(clk)
begin
if clk'event and clk='1' then

rotary_in <= rotary_b_in & rotary_a_in;

case rotary_in is

when "00" => rotary_q1 <= '0';
rotary_q2 <= rotary_q2;

when "01" => rotary_q1 <= rotary_q1;
rotary_q2 <= '0';

when "10" => rotary_q1 <= rotary_q1;
rotary_q2 <= '1';

when "11" => rotary_q1 <= '1';
rotary_q2 <= rotary_q2;

when others => rotary_q1 <= rotary_q1;
rotary_q2 <= rotary_q2;

end case;

end if;
end process rotary_filter;

rotary_q1
Set (‘1’) when A is High and B is High
Reset (‘0’) when A is Low and B is Low.
Remember current state in all other cases.

rotary_q2
Set (‘1’) when A is Low and B is High
Reset (‘0’) when A is High and B is Low.
Remember current state in all other cases.

i.e. XNOR i.e. XOR

D
et

en
t

D
et

en
t

Turning RIGHT

rotary_q2

The bold lines indicate where each signal is being forced and the normal lines indicate
where the flip-flop memory is retaining the current state. Although we now have a slightly
different signal behaviour, the signals are clean and direction can still be determined.

Rotary Encoder Interface for Spartan-3E Starter Kit 8

Direction and Rotation Events
The following scope traces show the output of the rotary filter compared with the original inputs. It is then possible to determine the direction.

This is not a simulation!

Hint – Never forget to exploit
Spartan programmable logic
during test and debugging. It was
possible to observe the ‘rotary_q1’
and ‘rotary_q2’ signals on a real
oscilloscope by adding temporary
connections to pins assigned to
the board J4 connector.

Turning RIGHT Turning LEFT Turning LEFT Turning RIGHT

A

B

rotary_q1

rotary_q2

Chatter!

0 01 1

It can be seen that when ‘rotary_q1’ changes from Low to High, the state of ‘rotary_q2’ indicates the direction. We can therefore use ‘rotary_q1’ to
determine each event and ‘rotary_q2’ to indicate direction.

direction: process(clk)
begin
if clk'event and clk='1' then

delay_rotary_q1 <= rotary_q1;
if rotary_q1='1' and delay_rotary_q1='0' then
rotary_event <= '1';
rotary_left <= rotary_q2;

else
rotary_event <= '0';
rotary_left <= rotary_left;

end if;

end if;
end process direction;

The Low to High transition of ‘rotary_q1’ is used to form a synchronous pulse and remember
the direction of rotation. This maintains synchronous design and is a million times better than
using ‘rotary_q1’ as another clock signal.

rotary_q1

CErotary_q2

rotary_event

rotary_left

Exercise – Observe ‘rotary_event’ and ‘rotary_left’ on an oscilloscope.

Synchronous pulse

Rotary Encoder Interface for Spartan-3E Starter Kit 9

Driving LED’s
In this design the rotary events are used to control a simple 8-bit sift register. Each shift register bit is then optionally inverted (by pushing the rotary press
switch) on the way to the output pin which drives the corresponding LED. A 390Ω resistor on the board is used to limit the current to approximately 3.5mA.

‘rotary event’ enables the shift register to operate.
Notice how the single clock cycle pulse ensures
that the LED pattern only moves by one position.

‘rotarty_left’ is used to determine the direction.
00100000

Hint – Signal declarations can be used to define initial values for registers.
These are then loaded into the Spartan-3E during configuration.
Check that LD4 really is the one to illuminate when you first configure the device.

signal led_pattern : std_logic_vector(7 downto 0):= "00010000";

Exercise 1 – Modify the shift register code such that the illuminated LED stops when it reaches the far left (LD7) or far right (LD0) position.

Exercise 2 – The ‘rotary_press’ input is not protected against switch chatter. Design and implement a suitable filter circuit to clean this signal.
1) Implement a test circuit based on a counter to demonstrate that switch chatter is present.
2) Design and implement your anti-chatter circuit.
3) Use your test design to demonstrate that the operation of the switch is now reliable.

rotary_press_in

GND

Rotary Encoder Interface for Spartan-3E Starter Kit 10

IOB Flip-Flops
Although not vital for this very low performance design, the VHDL does includes additional flip-flops which are mapped automatically into the input/output
blocks (IOB) of the Spartan-3E device. If you use the FPGA Editor to look inside the IOB blocks, you can see that these flip-flops have been used.

Why bother? Using the IOB flip-flops is good design practice for when designs require higher performance. Using the IOB flip-flops means that the input and
output timing is deterministic. In fact, even before you start your design you can know the input and output timing from the Spartan-3E data sheet. Besides,
that, why waste them?

Pad bonds to
Pin on package

IOB for ‘rotary_a’ input. IOB for ‘led(6)’ output.

Input Flip-flop (IFF)

Input buffer

Pad bonds to
Pin on package

output Flip-flop (OFF) Output buffer

if clk'event and clk='1' then

led <= led_drive;

end if;

How? – All you need to do is include the
additional layer of flip-flops connected directly
signals defining the pins. The tools will do the
rest for you.

D Q D Q D Q

clk

input output

IFF OFFFD

Global clock buffer (DCM can also be very useful)

Setup and hold time
at input is fixed

Clock to output time
Is fixed

All variable paths are now internal and covered
by a single (UCF) PERIOD constraint

Hint – A period constraint describes the
duration (or period) of one clock cycle. In
this case the 50MHz clock has a period of
20ns. The tools then attempt to keep all
connections between flip-flops short
enough to allow the propagation of signals
through the interconnect and logic to be
less than this value.

